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Abstract

A key finding in the literature on political behaviour is that attitudes are unstable across

time and domain. Existing models of attitude expression fail to explain the effect of key

variables like cost of thinking and cognitive uncertainty on attitude instability. We propose

a model of attitude expression based on the Drift Diffusion Model. We find a closed form

solution for this model and show that the model predicts temporal and domain instability.

We also show that instability increases as cost of thinking goes down and that instability

increases with cognitive uncertainty. In an extension, we show that our core model can be

used to explain the phenomenon of priming and framing.

1 Introduction

Attitudes are unstable across time and domain. An individual asked to express their opinion on

prison reform may have dramatically different answers on Tuesday compared to Thursday. And

the same individual may appear liberal when asked about abortion and conservative when asked

about gay rights. This is a central finding in the literature on Political Behaviour (Converse

1964; Zaller 1992).

There is significant heterogeneity in measured instability between and within people. Exist-

ing models such as the Receive - Accept - Sample model and the Gerber & Green (1993) model

can explain some sources of heterogeneity but fail to explain other major sources. For example,

existing models cannot explain how instability varies with cost of thinking or complexity of

questions.
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In this paper we propose a model of attitude expression based on the Drift Diffusion Model

from psychology and Neuroscience (Swensson 1972; Luce 1986; Ratcliff & McKoon 2008; Fuden-

berg, Strack & Strzalecki 2018). An agent is cognitively constrained and does not know their

true preferences. They can think, thinking gives them noisy (Brownian) signals of their true

preferences. Thinking is costly. At a certain point, the agent stops thinking and reports an

estimate of their preferences.

We find a simple, closed form solution for this model and show that the model predicts

temporal and domain instability. We also show that this model can explain key heterogeneity

in instability unaddressed by previous models. We show that instability increases as cost of

thinking decreases. This result is surprising, but has an intuitive explanation. As people think

more, there is a wider range of values that their cognitive signal can take, this increases the

variance/instability of their reported preferences. We also find that instability increases as with

complexity /cognitive constraint. When a topic is more complicated, the cognitive signal that

people receive has higher variance, this increases the range of values that the cognitive signal

can take, which increases the variance/ instability of their reported preferences.

In an extension, we show that our core model can be used to explain the phenomenon of

priming and framing.

The remainder of our paper unfolds as follows. In section 2 we review the related literature.

In section 3, we propose the model. In section 4, we solve the model. In sections 4 & 5 we

demonstrate how this model can explain temporal and domain instability and give predictions

on how cost of thinking and cognitive uncertianty affect instability. In section 6 we show how

the model can explain priming and framing effects. In section 8 we show the main findings are

robust to alternative specifications of the utility function and priors.

2



2 Contribution/Literature Review

There are a number of models of attitude formation and expression in Political Science. Achen

(1992) develops a Bayesian model of socialization and attitude formation. Gerber & Green

(1999) extend the standard Bayesian model to allow for certain types of bias. Neither of the

papers account for response instability. Zaller (1992) proposed the Receive - Accept - Sample

model. In the model, people first must understand and accept pieces of information. When they

express their preferences, they randomly sample the available, accepted pieces of information to

form an estimate of their preferences. The Receive-Accept-Sample model does not account for

key sources of heterogeneity in temporal and domain instability of preferences. For example,

it does not provide meaningful expectations about how instability changes when questions are

more complicated, when people are cognitively depleted, or when people do not have enough

time to properly consider questions.

The model presented in this paper is based on the idea of cognitive uncertainty. Cognitive

uncertainty - subjective uncertainty about personal preferences and beliefs - has been widely

documented by empirical work in psychology and behavioral economics (eg. Ilut & Valchev 2023;

Gabaix 2019; Woodford 2020; Enke & Graber 2023). Enke & Graeber (2023) propose a simple

framework to understand cognitive uncertainty. An agent does not know their true preferences.

They see a noisy signal of their preferences and use that to form an estimate of their preferences.

We enrich the Enke & Graver(2023) framework by allowing costly acquisition of signals. By

thinking more an agent can acquire a more precise understanding of their true beliefs. There

are several models of costly acquisition of information including models of experimentation

(Keller, Rady& Cripps 2005; Cripps, Rady & Keller 2002; Callander 2011), models of rational

inattention (Sims 2003) and models of sticky information (Gabaix & Laibson 2002). The model

most similar to ours is the Uncertian Drift Diffusion Model proposed by Fudenberg, Strack &

Strzalecki (2018). In their model an agent pays a constant per unit cost of time to observe

Brownian signals of their true parameter. Two notable theoretical contributions of our paper.

First, our model allows for a continuum of possible parameter values Fudenberg, Strack &

Strzalecki (2018) only allow for two parameter values. Second, We find a closed form solution
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to the model. Fudenberg, Strack & Strzalecki (2018) only make qualitative comments about the

solution.

The core theoretical contribution of this paper is a novel costly information acquisition

technology with a solution that is easy to understand and easy to apply in more complex

settings. This technology works particularly well in an introspection setting, but could also be

applied to a vast array of other settings (Eg. policy makers searching for an ideal policy, or

voters deciding between candidates).

3 The Model

An agent must report their true parameter θ ∈ R. If their report d is inaccurate, they suffer

from a dis-utility W = −(d− θ)2.

Due to cognitive constraints, the agent does not know their true parameter. They have

a prior θ ∼ N(µ, σ2
0) over the true parameter. They can think in order to learn more about

the parameter. If they think, they receive a Brownian signal st = θdt + σdB(t) of their true

parameter. We define ζt as the total filtration at time t and ST =
∫ T

0
stdt. The agent must pay

a cost cdt to think.

The agent chooses a level of thought τ and a report d in order to maximize their overall

utility.

(d∗, τ∗) = argmaxd,τE[−cτ − (d− θ)2]

3.1 Interpretation of the Model

The following is a way to interpret key forces at play in the model. The person has a cognitive

constraint which prevents them from knowing their true parameter. They can think, which gives

them a noisy (Brownian) signal of their true parameter. The signal is noisy because thinking

does not perfectly reveal preferences. For example, a person is asked to report their preferred
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tax rate. They think: ”Hmm, what is my preferred tax rate?” They recall different pieces of

information- conversations they had, articles they read, new segments they watched. Recollec-

tion is imperfect and somewhat random. Some of the information supports higher tax rates and

some of the information supports lower tax rates; none of the information perfectly reveals their

”true” preferred tax rate. They make an estimate of their ”true” preferred tax rate based on

the recalled information. This is a common interpretation of the process of introspection. It is

the interpretation frequently used by models of dynamic information acquisition (eg. Experi-

mentation - Cripps 2005) and by models of attitude expression (eg. Receive Accept Sample -

Zaller 1992).

σ represents the noisiness of the cognitive signal or the complexity. This can be exogenously

manipulated. For example, if a question is very complicated, a person will have a weaker

cognitive signal of their preferences. This is an interpretation frequently used by models of

cognitive uncertainty (eg. Enke & Graeber 2023).

c represents the cost of thinking. The cost of thinking may vary between people. For

example, a well educated person may have a lower cost of thinking than a person with little

education. The cost of thinking can also vary within a person. For example, when a person is

cognitively depleted they may have a higher cost of thinking.

4 Solution to the Model

In this section we solve the model. To solve the model we first assume a fixed stopping time

and find the optimal report d for the fixed stopping time. Once we obtain the optimal d we can

plug that into our utility expression and determine the optimal stopping time.

Lemma 1: Optimal Report

For fixed τ
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d∗ = E[θ|Xt] =

µ
σ0

+ Xτ

σ2√
1
σ2 + τ

This result is entirely expected. The optimal report is the expectation of θ given the in-

formation seen up to that point. The particular expression for expectation comes from the

fact that Sτ is Brownian with drift. Brownian motion with drift has the nice property that

Sτ ∼ N(θτ, τ). This means the posterior of θ is N(
Sττσ

2
0+µτ

σ2
0+τ

,
σ2
0τ
τ ). The expectation follows.

Something to note: the optimal report is the expectation given the information at time t.

In our setting, this is equivalent to the estimate of θ determined using the Kalman-Bucy filter.

Once we have the optimal report for a fixed stopping time, we can determine the expected

dis-utility from the optimal report.

Lemma 2: Dis-utility

For fixed τ

E[W (d∗, τ)] = − σ2
0σ

2

σ2 + τσ2
0

E[W (d∗, τ)] = E[(d∗ − θ)2] is the mean squared error of the optimal report d∗. Mean

squared error can be decomposed into bias and variance. In Lemma 1 we found that d∗ is the

unbiased estimate of θ. This means E[W (d∗, τ)] is the variance of the estimate d∗. As we noted

previously, d∗ is the estimate of θ determined by the Kalman - Bucy filter.E[W (d∗, τ)] is the

variance of the Kalman-Bucy estimate of θ.

E[W (d∗, τ)] is the expected dis utility from the optimal report. The expected dis-utility

decreases when a person thinks more (τ increases), and the expected dis-utility increases when

the complexity or cognitive uncertainty increases (σ2 increases).
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Thinking more reduces expected dis-utility. The optimizing agent wants to balance the cost

of thinking more with the benefit. The optimal stopping rule captures this fact:

Proposition 1: Optimal Action

τ∗ =


σ√
c
− σ2

σ2
0

if
√
c <

σ2
0

σ

0 otherwise

d∗ =


√
c

σ Sτ∗ + µ
√
cσ
σ2
0

if
√
c <

σ2
0

σ

0 otherwise

To find τ∗ we took first order conditions. The optimal stopping time is the precise time when

the marginal cost of thinking exceeds the marginal benefit. To find d∗,we plugged τ∗ into the

optimal reporting rule determined in lemma 1. This is a closed form solution to an Uncertain

Drift Diffusion Model. Previous work on uncertain drift diffusion models have not obtained

closed form solutions. They are only able to qualitatively describe elements of the solution (eg.

Fudenberg, Strack & Strzalecki 2018).

Proposition 2: Comparative Statics of Optimal Stopping

• ∂τ∗

∂c < 0

• ∂τ∗

∂σ2
0
> 0

• ∂τ∗

∂Sτ
= 0
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The amount of time spent thinking increases when the cost of thinking decreases (Item 1).

This is entirely expected. Thinking more increases utility, when it is cheaper to think, people

will think more.

The amount of time spent thinking increases when the amount of complexity or cognitive

uncertainty increases (Item 2). This is also entirely expected. When there is high complexity or

cognitive uncertainty a person needs to think more to achieve the same level of understanding

about their preferences.

There is an unexpected result- the amount of time spent thinking does not depend on the

history of observations (Item 3). To our knowledge, this is the only model of dynamic costly

information acquisition with a flexible stopping rule where the amount of information collected

is not affected by the history. For example, models of experimentation have history dependent

stopping rules (eg. Kelly Radner & Crips 2005). Why do we get this result? E[W (d∗, τ)] =

E[(d − τ)2] is effectively the mean squared error of the report d. Mean squared error can be

decomposed into bias and variance. The report is unbiased. The amount by which additional

data shrinks the variance does not depend on the history of observations. In extensions we

examine whether this finding is robust to different forms of W (d∗, τ).

Proposition 3: Attenuation

• ∂E[d∗]
∂θ < 1

• ∂2E[d∗]
∂θ∂σ2 < 0

• ∂2E[d∗]
∂θ∂c < 0

This model finds attenuation (item 1). Attenuation - the fact that reported references are

insufficiently elastic to true preferences - is one of the central findings in the cognitive uncertainty
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literature (eg. Enke & Graeber 2021). Attenuation occurs because people form noisy estimates

of the true parameter θ. To form the estimates they combine information from their noisy signal

with information from their prior. This estimation technique pulls reports towards the mean of

the prior which makes reports insufficiently elastic to the true parameter.

We find that attenuation increases when there higher cognitive uncertainty(item 2) . When

there is higher cognitive uncertainty, uncertainty people weight their prior information more

heavily, this means they are less responsive to information from thinking. This is consistent

with empirical work and existing models of cognitive uncertainty.

We find that attenuation increases when there are higher cognitive costs. When costs are

higher, a person thinks less. When they think less they have less information about their true

preferences and they rely on their prior more. Existing models of cognitive uncertainty do not

capture this fact.

5 Application 1 - Temporal Instability

In the next two section we discuss two applications- Temporal instability and Domain instabil-

ity. The model predicts both temporal and domain instability. The model also gives precise

predictions about how cost of thinking and complexity affect temporal and domain instability.

We model temporal instability in the following way. An agent needs to report the same

parameter θ at two distinct times, in period 1 and in period 2. In each period they conduct the

introspection process described in the main model. We make two assumptions. First, in period

2, they cannot remember anything from period 1. Second, the Brownian processes in period 1

and period 2 are independent. We define the variable D = d1 − d2.

Proposition 4: Temporal Instability
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D ∼ N(0, 2σ2(1−
√
c

σ2
0

)2)

Two things to note about this result. First, the difference in the reports has a mean of

zero. Period 2 reports are not expected to be systematically higher or lower than period 1

reports. Second, the variance is greater than zero. Period 1 and Period 2 reports are not

necessarily the same. This occurs because people form estimates of their true preferences from

noisy introspective signals. The signals, may be different in period 1 and period 2. This gives

us temporal instability. Temporal instability is one of the central findings of political behaviour,

any model attitude expression should yield temporal instability.

This model gives predictions about how key factors like cost of thinking and cognitive un-

certainty affect temporal instability.

Corollary 1: Comparative Statics of Temporal Instability

• ∂V ar(d∗)
∂c > 0

• ∂V ar(d∗)
∂σ2 < 0

We expect temporal instability to fall when the cost of thinking rises (item 1). This is a

very surprising result, but there is an intuitive explanation. When cost of thinking increases,

the amount of time people spend thinking increases, the range of possible values of the cognitive

signal Sτ∗ is larger. This means the difference between the report at time one and time two

can be larger. In other words, temporal instability is higher. This result highlights the benefit

of studying attitude expression with a formal model, it is not clear whether we would have

obtained this result using intuition alone. When does cost of thinking rise? An example is
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fatigue. From this model, we expect temporal instability to fall when a person is more fatigued.

Existing models of attitude expression do not make predictions about response instability and

fatigue. To our knowledge there is no empirical work in political science that examines temporal

instability and fatigue.

We expect temporal instability to rise when a person has more cognitive uncertainty about

the parameter θ (item 2). When the cognitive uncertainty about the parameter is higher, the

cognitive signal has more variance, the range of possible values of the cognitive signal is larger

and the range of possible expressed attitudes is larger. An example of a treatment that would

increase cognitive uncertainty is complicated questions. Existing models of attitude expression

to not make predictions about response instability and question complexity. To our knowledge

there has been no work in Political Science on response instability and question complexity.

6 Application 2 - Domain Instability

We model domain instability in the following way. An agent is asked to report their preferences

between two domains θa, θb. Across the population the true covariance between θa and θb is

cov(θa, θb) = ρ > 0. For each parameter, they conduct the introspection process described by

the model. We make two assumptions. First, for domain a, they cannot remember their report

or introspection process for domain b and vise versa. Second, the Brownian processes for a and

b are independent. We define β = cov(θa,θb)
var(θa)var(θb)

and we define β̂ = cov(da,db)
var(da)var(db)

.

Proposition 5: Domain Instability

β̂ =
var(θa)var(θb)

(var(θa) + 2σ2(1−
√
c

σ2
0
)2)(var(θb) + 2σ2(1−

√
c

σ2
0
)2)

β < β

Cognitive noise increases the variance of reported parameters, this lowers the estimated

relationship between parameters. Cognitive uncertainty makes it appear as if there is low cross
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domain constraint (stability). Our model makes specific predictions about how variables like

cost of thinking and cognitive uncertainty affect apparent cross domain instability.

Corollary 1: Comparative Statics of Domain Instability

• ∂β̂
∂c < 0

• ∂β̂
∂σ2

0
< 0

When cost of thinking decreases, the measured relationship between θa and θb will decreases

(item 1). When people have a lower cost of thinking, they think more, this increases the variance

of d∗ and the measured relationship between θa and θb will be lower. It will appear as if there

is high cross domain instability.

When there is higher cognitive uncertainty about the parameters, the measured relationship

will decrease (item 2) When there is higher cognitive uncertainty about the parameters θa and

θb, there will be higher variance of d∗, this lowers the measure relationship between θa and θb.

There have been useful tools developed by Political Methodologist and Econometricians to

address domain instability. For example, the ORIV estimator (Perez et al 2021) is designed to

correct artificially low measured relationships between variables due to measurement or response

errors (like cognitive uncertianty). It would be an interesting project to measure true domain

constraint using an ORIV estimator.

7 Application 3 - Priming and Framing

Priming and Framing - the fact that calling attention to certain facts or aspects of an issue

changes expressed opinions - has been studied widely in political science (eg. Druckman 2007;
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Druckman et al. 2001). We can use this model to explain the phenomena of priming and

framing.

We model it in the following way. An attitude θ̂ is comprised of two parts. Domain 1: θ1

and domain 2: θ2. In particular θ̂ = αθ1 + (1 − α)θ2. The person is asked to report θ̂. We

assume they know α, but do not know θ1 or θ2. Initially they have the same cost of thinking for

domain 1 and domain 2, c1 = c2. Priming or framing reduces the cost of thinking in a particular

domain.

Priming occurs in domain 1, making c1 < c2. For ease of exposition we assume that θ1 > µ >

θ2. We also assume that the Brownian processes of domain 1 and domain 2 are independent.

d̂p is the report of θ̂ with priming. d̂np is the report of θ̂ with no priming.

Proposition 6: Priming

E[d̂p] < E[d̂np]

To develop an estimate of θ̂, the person must develop two separate estimates one of θ1 and

one of θ2. Priming lowers the cost of thinking about domain 1, this means the agent thinks

more about the domain. As they think more about the domain, they put less weight on the

prior and more weight on the realized signals. Because θ1 > µ, the expectation of the estimate

is higher. The person has been primed to think about domain 1, the expected estimate will be

closer to θ1.

We should note this is very different from other models of priming and framing. Other

models of priming and framing (eg. Schliefer 1993; Ortelova 2025) conceptualize priming and
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framing as changing the weight placed on each domain. This would be equivalent to changing

α. The old models are valuable, but it is clear that cognitive complexity may also play a role in

priming and framing.

8 Robustness Checks

In this section we examine alternative specifications of the utility function, we show that most

of our main results continue to hold.

8.1 Dirac Utility

Suppose the utility function is now W =


1
2ϵ if d ∈ (θ + ϵ, θ − ϵ)

0 otherwise

. With this utility function

agents get a fixed payoff for being close enough to the true parameter and a payoff of zero for

not being close enough to the true parameter.

We continue to assume that the agent has a prior θ ∼ N(µ, σ2
0) over the true parameter and

that they can think to learn more about the parameter. If they think, they receive a Brownian

signal st = θdt+ dB(t) of their true parameter. The agent must pay a cost cdt to think.

To solve this model we again find the optimal report d∗ for a fixed stopping time τ . We then

plug the reporting rule into the expression for utility and take first order conditions to find the

optimal stopping time.

Lemma 3: Optimal Report - Dirac Dis-utility

For fixed τ

d∗ = E[θ|ζt] =
Sττσ

2
0 + µτ

σ2
0 + τ
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Again in this case, the optimal report is the posterior mean/mode. The agent is most likely

to land within ϵ of the true parameter and receive positive utility if they report the mode of the

posterior distribution. In the case of normal distributions the mean and the mode co-coincide.

Lemma 4: Dirac Utility

For fixed τ

E[W (d∗, τ)] =

√
σ−2
0 + τ

2π

This result was obtained from a bunch of algebra, details are in the appendix. This expression

makes sense, utility is increase in the amount of time spent thinking and decreasing in the amount

of initial uncertainty about the parameter.

Thinking more gives the agent more utility, there is a cost to thinking more. The optimizing

agent balances the cost with the benefit.

Proposition 7: Optimal Action

τ∗ =


1

8πσ2
0
− 1

σ2
0

if 8πσ2
0 < σ2

0

0 otherwise

d∗ =


8πc2Sτ∗ + µ 8πc2

σ2
0

if
√
c < σ2

0

µ otherwise
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Again the optimal stopping time τ∗ was determined by taking first order conditions, and the

optimal reporting rule was determined by plugging the optimal stopping time into the expression

for the optimal reporting rule.

There are several similarities between this specification of the model and the main model.

First, the stopping rule does not depend on the history. Second, the optimal stopping time is

decreasing in c and increasing in σ2
0 . Third, the model predicts attenuation.

8.2 Chernoff Utility

Suppose the utility from a report was given by W =


k if sign(d) = sign(θ)

−k otherwise

. With this

utility function agents get a positive payoff for guessing the correct sign of their parameter. For

example, they get a positive payoff for guessing that they prefer higher taxes opposed to lower

taxes. The precise tax rate doesn’t matter.

Again we assume that the agent has a prior θ ∼ N(µ, σ2
0). That thinking , results in Brownian

signals st = θdt+ dB(t) of their true parameter. And the agent must pay a cost cdt to think.

Once again we start by fixing τ and finding the optimal reporting rule.

Lemma 5: Optimal Report - Dirac Dis-utility

For fixed τ

d∗ =


+ if Sτ + µ

σ2
0
> 0

− otherwise

Here the agent reports that the parameter is positive if the probability that the parameter

is positive is greater than 1
2 . For a fixed stopping time τ , this occurs when Sτ + µ

σ2
0
> 0.
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Using this decision rule we can compute the expected value of W at time τ .

Lemma 6: Chernoff Utility

E[W (d∗, τ)] =
1√

τ + σ−2
0

ϕ(
Sτ + µ

σ2
0√

τ + σ−2
0

)−
|Sτ + µ

σ2
0
|√

τ + σ−2
0

Φ(
|Sτ + µ

σ2
0
|√

τ + σ−2
0

)

This result was determined by (Shiryaev et al 2008). As part of their work on Chernoff

Problems. They come up with an integral equation which defines the optimal stopping time.

We come up with a closed form solution for this problem. The following lemmas are necessary

intermediate steps for the solution of this problem. We can redefine τ∗ = T + τ∗r . T is the time

spent searching so far and τ∗r is the time remaining until the agent reaches τ∗.

Lemma 7: Optimal Stopping Time

∂

∂τ∗r
E[cτ +W (d∗, τ∗)] = 0

The derivative of the utility, with respect to τ∗r is zero at the optimal stopping time. This is

by definition. τ∗ is designed to maximizes expected utility, the derivative must be zero.

Lemma 8: Optimal Stopping Time

τ∗r = 0 @τ∗

At the optimal stopping time, there is no more time remaining until reaching the optimal
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stopping time. This again is by definition. We can combine Lemma 7 and 8 to derive the

optimal stopping time.

Proposition 8: Optimal Action

This proposition is a simple solution to this optimal stopping problem. This optimal stopping

problem was first proposed by Chernoff in 1964. Existing solutions require an integral equation

to define the stopping rule (eg. Gapeev & Peskir 2006; Ekström & Vaicenavicius, 2015). Our

solution does not require an integral equation, the proof technique is also much simpler. This

is one of the theoretical contributions of the paper.

We know the derivative is zero at the optimal stopping time. We also know that the addi-

tional time left to reach the optimal stopping time is zero. We can plug zero into the equation,

this defines t in terms of Sτ .

In parameterization of the problem, the stopping time does depend on the history. This

makes sense. If the cumulative signal St is close to zero, the agent will want to continue

thinking; however, if the cumulative signal is far from zero, there is little benefit to continuing

thinking. The stopping rule depends on t. When t is low, the agent will stop thinking if St

is relatively close to 0. When t is large, the cumulative signal needs to be further from 0 for

the agent to stop thinking. This makes sense, the variance of the cumulative signal grows with

t, the a positive cumulative signal early means a higher likelihood that the true parameter is

positive, compared to the same positive cumulative signal later on.
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